Technologie: Plazma displeje
19.11.2003, Zdeněk Kabát, článek
Po delší době se opět vracíme k popisu nějaké zobrazovací technologie. Tentokrát jsme si vzali do hledáčku plazma displeje, které jsou základem nejen hi-endových televizí, ale jsou ve velké míře využity v informačních technologiích.
Kapitoly článku:
- Technologie: Plazma displeje
- Plazma a struktura displeje
- Princip zobrazování, výhody a nevýhody
- Moderní displeje - Fujitsu ALiS
- Další PDP technologie
Plazma – čtvrté skupenství
Abychom pochopili princip plazma displejů, musím si nejdříve objasnit, co je to plazma a jakou funkci má u technologie PDP (Plasma Display Panel). Hmota, jak ji známe, se skládá z atomů, zatímco plazma je skupenstvím složeným z iontů a elementárních částic. Protože není plazma plynem, kapalinou ani pevnou látkou, nazývá se někdy čtvrtým skupenstvím.
V klidovém stavu se v plazma displejích nachází plyn, resp. se jedná o směs vzácných plynů jako je argon, neon či xenon. Jsou to elektroneutrální atomy, čili musíme najít způsob, jak z nich vytvořit plazmu. Ten je jednoduchý – do plynu se pustí elektrický proud, čímž se objeví mnoho volných elektronů. Srážky mezi elektrony a částicemi plynu ústí v to, že některé atomy plynu ztratí své elektrony a vznikají tak kladně nabité ionty. Spolu s elektrony tedy získáváme plazmu.
Tím, že máme vytvořeno elektrické pole, začnou se jednotlivé nabité částice pohybovat ke svým opačným pólům – plynové ionty k záporně a elektrony ke kladně nabitému pólu. V plazmě tedy dochází k velkým pohybům a ve vzniklém „zmatku“ se začnou jednotlivé částice srážet. To způsobí, že plynové ionty se dostávají do excitovaného stavu a poté uvolní foton, tedy světlo.
Obr. 2 – Schéma uvolnění fotonu z plynového iontu
K pochopení uvolnění fotonu musíme zabrousit ještě hlouběji do chemie. Při nárazu volného elektronu do jednoho z elektronů iontu na nižším orbitalu získá tato částice energii, která jí dovolí na krátký čas přejít na vyšší energetickou hladinu (Např. z orbitalu „s“ do orbitalu „p“). Ovšem okamžitě poté ho elektromagnetické síly donutí k návratu na původní orbital a přebytečná energie je uvolněna ve formě fotonu (foton je částice, jejíž hmota a energie je dána pouze rychlostí – při nulové rychlosti zaniká).
Ovšem energie fotonu, který je uvolněn ionty neonu a xenonu, je často tak vysoká, že vlnová délka přesahuje možnosti lidského oka. Uvolňuje se totiž pro nás neviditelné ultrafialové záření. Aby vznikl na plazma displeji obraz, musí dojít ještě k dalšímu procesu, který si vysvětlíme dále.
Struktura plazma displeje
Z toho, co jsme si nyní řekli je evidentní, že plazma displeje jsou aktivní a své světlo samy vyzařují (na rozdíl od podsvětlovaných LCD displejů). Ovšem ještě je nutné, aby ultrafialové záření bylo převedeno na viditelné světlo. To je stejně jako u CRT monitorů zajištěno luminoforem, kterým je pokryta zevnitř každá obrazová buňka (viz níže). Luminofor způsobuje, že po vstřebání elektronu či ultrafialového záření vyzáří viditelné světlo.
Celý plazma displej je tvořen matricí miniaturních fluorescentních buněk (pixelů), které jsou ovládány sítí elektrod. Buňky jsou uzavřeny mezi dvěma tenkými skleněnými tabulkami, každá obsahuje malý kondenzátor a tři elektrody. Adresovací elektroda je umístěna na zadní stěně buňky, zatímco dvě transparentní zobrazovací elektrody leží na přední stěně. Tyto dvě elektrody jsou izolovány dielektrikem a chráněny vrstvou oxidu hořečnatého (MgO). Zde je schéma:
Obr. 3 – Schéma jedné buňky plazma displeje
Struktura displeje je tedy maticí, kde horizontální řádky tvoří adresovací elektrody, zatímco vertikální sloupce jsou zobrazovací (někdy se jim říká výbojové) elektrody. Vzniká tak mřížka, ve které lze každou buňku adresovat zvlášť. Všechny pixely se u barevných plasma displejů skládají ze tří barevných subpixelů, z červeného, zeleného a modrého. Zde je opět názorný obrázek:
Obr. 4 – Schéma struktury plazma displeje
Na další stránce se již můžeme ponořit do tajů zobrazovací techniky na plazma displejích.
Abychom pochopili princip plazma displejů, musím si nejdříve objasnit, co je to plazma a jakou funkci má u technologie PDP (Plasma Display Panel). Hmota, jak ji známe, se skládá z atomů, zatímco plazma je skupenstvím složeným z iontů a elementárních částic. Protože není plazma plynem, kapalinou ani pevnou látkou, nazývá se někdy čtvrtým skupenstvím.
V klidovém stavu se v plazma displejích nachází plyn, resp. se jedná o směs vzácných plynů jako je argon, neon či xenon. Jsou to elektroneutrální atomy, čili musíme najít způsob, jak z nich vytvořit plazmu. Ten je jednoduchý – do plynu se pustí elektrický proud, čímž se objeví mnoho volných elektronů. Srážky mezi elektrony a částicemi plynu ústí v to, že některé atomy plynu ztratí své elektrony a vznikají tak kladně nabité ionty. Spolu s elektrony tedy získáváme plazmu.
Tím, že máme vytvořeno elektrické pole, začnou se jednotlivé nabité částice pohybovat ke svým opačným pólům – plynové ionty k záporně a elektrony ke kladně nabitému pólu. V plazmě tedy dochází k velkým pohybům a ve vzniklém „zmatku“ se začnou jednotlivé částice srážet. To způsobí, že plynové ionty se dostávají do excitovaného stavu a poté uvolní foton, tedy světlo.
Obr. 2 – Schéma uvolnění fotonu z plynového iontu
K pochopení uvolnění fotonu musíme zabrousit ještě hlouběji do chemie. Při nárazu volného elektronu do jednoho z elektronů iontu na nižším orbitalu získá tato částice energii, která jí dovolí na krátký čas přejít na vyšší energetickou hladinu (Např. z orbitalu „s“ do orbitalu „p“). Ovšem okamžitě poté ho elektromagnetické síly donutí k návratu na původní orbital a přebytečná energie je uvolněna ve formě fotonu (foton je částice, jejíž hmota a energie je dána pouze rychlostí – při nulové rychlosti zaniká).
Ovšem energie fotonu, který je uvolněn ionty neonu a xenonu, je často tak vysoká, že vlnová délka přesahuje možnosti lidského oka. Uvolňuje se totiž pro nás neviditelné ultrafialové záření. Aby vznikl na plazma displeji obraz, musí dojít ještě k dalšímu procesu, který si vysvětlíme dále.
Struktura plazma displeje
Z toho, co jsme si nyní řekli je evidentní, že plazma displeje jsou aktivní a své světlo samy vyzařují (na rozdíl od podsvětlovaných LCD displejů). Ovšem ještě je nutné, aby ultrafialové záření bylo převedeno na viditelné světlo. To je stejně jako u CRT monitorů zajištěno luminoforem, kterým je pokryta zevnitř každá obrazová buňka (viz níže). Luminofor způsobuje, že po vstřebání elektronu či ultrafialového záření vyzáří viditelné světlo.
Celý plazma displej je tvořen matricí miniaturních fluorescentních buněk (pixelů), které jsou ovládány sítí elektrod. Buňky jsou uzavřeny mezi dvěma tenkými skleněnými tabulkami, každá obsahuje malý kondenzátor a tři elektrody. Adresovací elektroda je umístěna na zadní stěně buňky, zatímco dvě transparentní zobrazovací elektrody leží na přední stěně. Tyto dvě elektrody jsou izolovány dielektrikem a chráněny vrstvou oxidu hořečnatého (MgO). Zde je schéma:
Obr. 3 – Schéma jedné buňky plazma displeje
Struktura displeje je tedy maticí, kde horizontální řádky tvoří adresovací elektrody, zatímco vertikální sloupce jsou zobrazovací (někdy se jim říká výbojové) elektrody. Vzniká tak mřížka, ve které lze každou buňku adresovat zvlášť. Všechny pixely se u barevných plasma displejů skládají ze tří barevných subpixelů, z červeného, zeleného a modrého. Zde je opět názorný obrázek:
Obr. 4 – Schéma struktury plazma displeje
Na další stránce se již můžeme ponořit do tajů zobrazovací techniky na plazma displejích.