Galerie 18
Technologie: Vodní chlazení
Článek Ostatní Chlazení a skříně Vodní chlazení Obecně

Technologie: Vodní chlazení

Jan Vítek

Jan Vítek

17

Seznam kapitol

1. Technologie: Vodní chlazení 2. Vodní bloky 3. Vodní bloky - pokračování 4. Čerpadla 5. Radiátory, hadičky, fitinky a svěrky 6. Expanzní nádoby, problémy a závěr

Výkon procesorů jde stále nahoru, ovšem společně s výkonem jde nahoru i tepelná ztrátovost, která u těch nejrychlejších CPU přesahuje i 100W. Tolik tepelné energie se musí z jádra procesoru někam odevzdat. Klasicky na tento úkol postačuje kovový pasivní chladič, kolem něhož proudí vzduch tlačený ventilátorem. Ovšem, jak vodní chlazení ukazuje, jde to i podstatně lépe a hlavně tišeji. Zaměříme se proto na základy vodního chlazení dnešních PC.

Reklama

Úvod do problematiky

Rozdíl mezi chlazením vzduchem a vodou není tak velký, jak by se na první pohled mohlo zdát. Oboje pracuje v podstatě na naprosto stejném principu ochlazování pasivní části určitým médiem, rozdíl je pouze ve fyzikálních vlastnostech použitých materiálů. Co se týče samotných pasivních částí, zde se materiály mezi vzduchovým a vodním chlazením neliší (až na použití plexiskla u vodního chlazení).

Technologie: Vodní chlazení





Obr.1 – PC chlazené vodou

Používají se výhradně dva kovy – měď a hliník. U chlazení vzduchem se v současné době přechází z téměř výhradního používání hliníku na měď, popřípadě kombinaci mědi s hliníkem, protože měď má výrazně vyšší tepelnou vodivost, ovšem na druhou stranu je daleko těžší a hlavně dražší. Co se týče vodního chlazení, hliník se využíval hlavně v pionýrských dobách, kdy se vodní bloky dělaly doslova na koleně. Nezřídka se také využívaly pasivy určené původně pro chlazení vzduchem, které se „zakapotovaly“ přiletováním tenkých plechů. Ovšem dnes se vodní bloky vyrábějí téměř výhradně z mědi; hliník je využit jen pro podružné účely, jako je zakrytí vodního bloku.

hliník (Al)měď (Cu)poměr měď/hliník

tepelná vodivost (W/m*K)

229

395

1 : 1,72

hmotnost (kg/m3)

2700

8930

1 : 3,3

Nyní se dostáváme k prvnímu velkému rozdílu mezi vzduchovým a vodním chlazením. Použitá chladící média, tedy vzduch a voda se od sebe výrazně liší, co se týče tepelné vodivosti, která je důležitá k přejímání tepla z pasivní části chlazení. Zde je na tom voda 25x lépe než vzduch a právě zde je hlavní důvod, proč je vodní chlazení oproti vzduchovému tak účinné. Ovšem, abych nemystifikoval, chlazení vzduchem se i při přechodu na vodní chlazení jen tak nevyhnete, ale o tom později. Voda má oproti vzduchu také daleko větší tepelnou kapacitu, to znamená, kolik tepelné energie je schopno určité množství vody pohltit. V praxi tato veličina není až tak důležitá, voda se prostě jen déle ohřívá na „pracovní teplotu“.

vzduchvodapoměr vzduch/voda

tepelná vodivost (W/m*K)

0,024

0,6

1 : 25

Prokousali jsme se přes základní teorii a teď už tedy k principu samotného vodního chlazení. Základním prvkem je tedy vodní blok z mědi, který se připevní na procesor. Skrz tento blok prochází chladící médium – voda, která ho ochlazuje a dále odtéká hadičkami do dalších částí chlazení. Zde je ovšem vidět jedna velká nevýhoda vodního chlazení. U chlazení vzduchem si nemusíte lámat hlavu s tím, jak ohřátý vzduch zase zpátky zchladíte, aby se dal znovu použít. Prostě ho vyženete ven ze skříně počítače. Ovšem voda v chlazení cirkuluje, tudíž musíme zajistit, aby se před opětovným prohnáním vodním blokem alespoň částečně zchladila. Způsobů, jak toho docílit, je celá řada a zmíním se o nich dále v článku.


Předchozí
Další
Reklama
Reklama

Komentáře naleznete na konci poslední kapitoly.

Reklama
Reklama